Цель работы : экспериментальное исследование собственных и вынужденных колебаний тока и напряжения на элементах в колебательном контуре; измерение параметров контура: индуктивности L, сопротивления R, добротности Q; исследование прохождения синусоидального тока через LCR-цепь.
Теоретическая часть.
Рисунок 1.
Уравнение, которому удовлетворяет ток I в колебательном контуре (рис.1) с подключенным к нему генератором синусоидальной ЭДС e = e 0 × cos w t имеет вид: (1)
где:
- коэффициент затухания.
- собственная круговая частота, R - сопротивление резистора, L - индуктивность катушки, С - емкость конденсатора, ; e 0 , w - амплитуда и круговая частота синусоидальной ЭДС.
Общее решение неоднородного линейного уравнения (1):
(2)
где: - круговая частота собственных затухающих колебаний тока.
и - начальные амплитуда и фаза собственных колебаний.
I 0 - амплитуда вынужденных колебаний тока.
D j - разность фаз между ЭДС и током.
(3)
(4)
- импеданс цепи.
- индуктивное сопротивление, - емкостное сопротивление.
Собственные колебания:
Если b 2 < w 0 2 , то есть R<2 × , то w ¢ - действительная и собственная частота колебаний представляет собой квазипериодический процесс с круговой частотой w ¢ , , периодом , и затухающей амплитудой (рис 1).
За характерное время ( t - время релаксации) амплитуда тока уменьшается в е раз, то есть эти колебания практически затухают.
- добротность контура.
Если b 2 ³ w 0 2 , то w ¢ - мнимая частота, и колебания представляют собой апериодический процесс.
- критическое сопротивление.
Вынужденные колебания: c течением времени первый член в формуле (2) обращается в ноль и остается только второй, описывающий вынужденные колебания тока в контуре.
- амплитуда вынужденных колебаний напряжения на резисторе R.
При совпадении частоты ЭДС с собственной частотой контура ( w = w 0 ), амплитуды колебаний тока и напряжения U R0 на резисторе максимальны. Большой селективный отклик колебательной системы на периодическое внешнее воздействие называется резонансом .
Экспериментальная часть.
Результаты эксперимента:
№ |
f, кГц |
e ЭФ , мВ |
U R ЭФ , мВ |
a |
b |
, × 10 -4 |
D j , ° |
1 |
180 |
200 |
24 |
4,0 |
3,4 |
1,2 |
58 |
2 |
190 |
190 |
32 |
5,2 |
4,0 |
1,7 |
51 |
3 |
195 |
185 |
38 |
6,0 |
4,3 |
2,0 |
48 |
4 |
200 |
180 |
45 |
2,8 |
2,0 |
2,5 |
46 |
5 |
205 |
170 |
54 |
3,2 |
2,0 |
3,2 |
38 |
6 |
210 |
155 |
63 |
3,8 |
2,0 |
4,1 |
32 |
7 |
215 |
142 |
72 |
4,2 |
1,0 |
5,1 |
14 |
8 |
218 |
138 |
75 |
4,4 |
0,0 |
5,4 |
0 |
9 |
220 |
135 |
76 |
4,3 |
0,5 |
5,6 |
6 |
10 |
225 |
140 |
73 |
4,2 |
1,8 |
5,2 |
25 |
11 |
230 |
150 |
65 |
3,8 |
2,6 |
4,3 |
43 |
12 |
235 |
165 |
56 |
3,5 |
2,6 |
3,4 |
48 |
13 |
240 |
175 |
48 |
3,0 |
2,7 |
2,7 |
64 |
14 |
250 |
180 |
36 |
2,2 |
2,1 |
2,0 |
76 |
15 |
260 |
195 |
28 |
1,8 |
1,7 |
1,4 |
90 |
16 |
270 |
200 |
22 |
1,6 |
1,6 |
1,1 |
90 |
17 |
280 |
200 |
18 |
1,3 |
1,3 |
0,9 |
90 |
18 |
290 |
200 |
15 |
1,0 |
1,0 |
0,8 |
90 |
19 |
300 |
205 |
12 |
1,0 |
1,0 |
0,6 |
90 |
Задание 1. Исследование зависимости амплитуды вынужденных колебаний от частоты (резонансная кривая).
Исходные данные:U вых =200 мВ, e ЭФ =200 мВ. f Î [180;300] кГц.
Расчеты необходимых величин:
Строим график зависимости
,где w 1 и w 2 - значения частот на уровне
Из экспериментального графика видно, что он по своей форме совпадает с графиком, полученным теоретически из формулы:
Исследование зависимости разности фаз между ЭДС и током в контуре.
Из экспериментального графика D j =F( f ) получаем: f 0 =218 кГц.
Сравнивая полученные результаты с результатами из предыдущего опыта видно, что различие в величинах w 0 и L незначительны.
Можно сделать вывод, что при резонансной частоте X L » X C и величина импеданса цепи минимальна.
Рисунок 2.
Задание 2. Исследование собственных электрических колебаний.
На данном рисунке представлена форма затухающих колебаний напряжения U C на конденсаторе, полученная с помощью осциллографа. Изображение совпадает с теоретическим графиком.
Из графика: Т=2 × 2,4 × 10 -6 с - период колебаний.
t =2 × 3,8 × 10 -6 с - время релаксации.
Задание 3. Исследование прохождения синусоидального тока через LCR - цепь
.
f ,кГц |
U ВЫХЭФ ,10 -3 В |
U 0ВЫХ ,10 -3 В |
150 |
41 |
56 |
160 |
33 |
46 |
170 |
27 |
38 |
180 |
22 |
31 |
190 |
14 |
19 |
200 |
9 |
13 |
205 |
6 |
8 |
210 |
3 |
4 |
215 |
1 |
2 |
218 |
0 |
0 |
220 |
0 |
0 |
225 |
1 |
2 |
230 |
2 |
3 |
235 |
4 |
6 |
240 |
5 |
7 |
250 |
9 |
13 |
260 |
13 |
18 |
270 |
17 |
24 |
280 |
22 |
31 |
290 |
25 |
35 |
300 |
30 |
42 |
Построим график U 0ВЫХ =F( f ). Резонансная частота из графика равна: f 0 =220 кГц.
При этом импеданс цепи является бесконечно большим и ток в цепи не протекает.
R=50 Ом, f =2 МГц.
Погрешности измерений.
Задание 1.
1) Погрешность f 0 : f определяли на частотомере
2) Погрешность L:
3) Погрешность Q:
4) Погрешность R:
e R =5% D R=3,1Ом
5) Погрешность X L :
6) Погрешность X C :
7) Погрешность b :
Вывод: на этой работе мы экспериментально исследовали собственные и вынужденные колебания тока и напряжения на элементах в колебательном контуре; измерили параметры контура: индуктивности L, сопротивления R, добротности Q; исследовали прохождение синусоидального тока через LCR-цепь.