Развитие силы и мышц

 

Оздоровительный и профилактический эффект массовой физической культуры неразрывно связан с повышенной физической активностью, усилением функций опорно-двигательного аппарата, активизацией обмена веществ. Учение Р. Могендовича о моторно-висцеральных рефлексах показало взаимосвязь деятельности двигательного аппарата, скелетных мышц и вегетативных органов. В результате недостаточной двигательной активности в организме человека нарушаются нервно-рефлекторные связи, заложенные природой и закрепленные в процессе тяжелого физического труда, что приводит к расстройству регуляции деятельности сердечно сосудистой и других систем, нарушению обмена веществ и развитию дегенеративных заболеваний (атеросклероз и др.).

Для нормального функционирования человеческого организма и сохранения здоровья необходима определенная “доза” двигательной активности. В этой связи возникает вопрос о так называемой привычной двигательной активности, т. е. деятельности, выполняемой в процессе повседневного профессионального труда и в быту. Наиболее адекватным выражением количества произведенной мышечной работы является величина энергозатрат. Минимальная величина суточных энергозатрат, необходимых для нормальной жизнедеятельности организма, составляет 12--16 МДж (в. зависимости от возраста, пола и массы тела), что соответствует 2880--3840 ккал. Из них на мышечную деятельность должно расходоваться не менее 5,0--9,0 МДж (1200--1900 ккал); остальные энергозатраты обеспечивают поддержание жизнедеятельности онанизма в состоянии покоя, нормальную деятельность систем дыхания и кровообращения, обменные процессы и т. д. (энергия основного обмена). В экономически развитых странах за последние 100 лет удельный вес мышечной работы как генератора энергии, используемой человеком, сократился почти в 200 раз, что привело к снижению энергозатрат на мышечную деятельность (рабочий обмен) в среднем до 3,5 МДж. Дефицит энергозатрат, необходимых для нормальной жизнедеятельности организма, составил, таким образом, около 2,0--3,0 МДж (500-- 750 ккал) в сутки. Интенсивность труда в условиях современного производства не превышает 2--3 ккал/мир, что в 3 раза ниже пороговой величины (7,5 ккал/мин) обеспечивающей оздоровительный и профилактический эффект. В связи с этим для компенсации недостатка энергозатрат в процессе трудовой деятельности современному человеку необходимо выполнять физические упражнения с расходом энергии не менее 350--500 ккал в сутки (или 2000--3000 ккал в неделю).

По данным Беккера, в настоящее время только 20 % населения экономически развитых стран занимаются достаточно интенсивной физической тренировкой, обеспечивающей необходимый минимум энергозатрат, у остальных 80 % суточный расход энергии значительно ниже уровня, необходимого для поддержания стабильного здоровья. Резкое ограничение двигательной активности в последние десятилетия привело к снижению функциональных возможностей людей среднего возраста. Так, например, величина МПК у здоровых мужчин снизилась примерно с 45,0 до 36,0 мл/кг. Таким образом, у большей части современного населения экономически развитых стран возникла реальная опасность развития гипокинезии.

Синдром, или гипокинетическая болезнь, представляет собой комплекс функциональных и органических изменений и болезненных симптомов, развивающихся в результате рассогласования деятельности отдельных систем и организма в целом с внешней средой. В основе патогенеза этого состояния лежат нарушения энергетического и пластического обмена (прежде всего в мышечной системе). Механизм защитного действия интенсивных физических упражнений заложен в генетическом коде человеческого организма. Скелетные мышцы, в среднем составляющие 40 % массы тела (у мужчин), генетически запрограммированы природой на тяжелую физическую работу. “Двигательная активность принадлежит к числу основных факторов, определяющих уровень обменных процессов организма и состояние его костной, мышечной и сердечно-сосудистой систем”, -- писал академик В. В. Парин (1969). Мышцы человека являются мощным генератором энергии. Они посылают сильный поток нервных импульсов для полдержания оптимального тонуса ЦНС , облегчают движение венозной крови по сосудам к сердцу (“мышечный насос”), создают необходимое напряжение для нормального функционирования двигательного аппарата. Согласно “энергетическому правилу скелетных мышц” И. А. Аршавского, энергетический потенциал организма и функциональное состояние всех органов и систем зависит от характера деятельности скелетных мышц. Чем интенсивнее двигательная деятельность в границах оптимальной зоны, тем полнее реализуется генетическая программа и увеличиваются энергетический потенциал, функциональные ресурсы организма и продолжительность жизни. Различают общий и специальный эффект физических упражнений, а также их опосредованное влияние на факторы риска.

Наиболее общий эффект тренировки заключается в расходе энергии, прямо пропорциональном длительности и интенсивности мышечной деятельности, что позволяет компенсировать дефицит энергозатрат. Важное значение имеет также повышение устойчивости организма к действию неблагоприятных факторов внешней среды: стрессовых ситуаций, высоких и низких температур, радиации, травм, гипоксии. В результате повышения неспецифического иммунитета повышается и устойчивость к простудным заболеваниям. Однако использование предельных тренировочных нагрузок, необходимых в большом спорте для достижения “пика” спортивной формы, нередко приводит к противоположному эффекту-- угнетению иммунитета и повышению восприимчивости к инфекционным заболеваниям . Аналогичный отрицательный эффект может быть получен и при занятиях массовой физической культурой с чрезмерным увеличением нагрузки. Специальный эффект оздоровительной тренировки связан с повышением функциональных возможностей сердечно-сосудистой системы. Он заключается в экономиза- ции работы сердца в состоянии покоя и повышении резервных возможностей аппарата кровообращения при мышечной деятельности. Один из важнейших эффектов физической- тренировки -- урежение частоты сердечных сокращений в покое (брадикардия) как проявление экономизации сердечной деятельности и более низкой потребности миокарда в кислороде. Увеличение продолжительности фазы диастолы (расслабления) обеспечивает больший кроваток и лучшее снабжение сердечной мышцы кислородом. У лиц с брадикардией случаи заболевания ИБС выявлены значительно реже, чем у людей с частым пульсом. Считается, что увеличение ЧСС в покое на 15 уд/мин повышает риск внезапной смерти от инфаркта на 70 % -- такая же закономерность наблюдается и при мышечной деятельности. При выполнении стандартной нагрузки на велоэргометре у тренированных мужчин объем коронарного кровотока почти в 2 раза меньше, чем у нетрени- .рованных (140 против 260 мл/мин на 100 г ткани миокарда), соответственно в 2 раза меньше и потребность миокарда в кислороде (20 против 40 мл/мин на 100 г ткани). Таким образом, с ростом уровня тренированности потребность миокарда в кислороде снижается как в состоянии покоя, так и при субмаксимальных нагрузках, что свидетельствует об экономизации сердечной деятельности. Это обстоятельство является физиологическим обоснованием необходимости адекватной физической тренировки для больных ИКС, так как по мере роста тренированности и снижения потребности миокарда в кислороде повышается уровень пороговой нагрузки, которую испытуемый может выполнить без угрозы ишемии миокарда и приступа стенокардии.

Наиболее выражено повышение резервных возможностей аппарата кровообращения при напряженной мышечной деятельности: увеличение максимальной частоты сердечных сокращений, систолического и минутного объема крови, артерио-венозной разницы по кислороду, снижение общего периферического сосудистого сопротивления (ОППС) , что облегчает механическую работу сердца и увеличивает его производительность. Оценка функционаальных резервов системы кровообращения при предельных физических нагрузках у лиц с различным уровнем физического состояния показывает: люди со средним УФС (и ниже среднего) обладают минимальными функциональными возможностями, граничащими с патологией, их физическая работоспособность ниже 75% ДМПК. Напротив, хорошо тренированные физкультурники с высоким УФС по всем параметрам соответствуют критериям физиологического здоровья, их физическая работоспособность достигает оптимальных величин или же превышает их (100 % ДМПК и более, или 3 Вт/кг и более). Адаптация периферического звена кровообращения сводится к увеличению мышечного кровотока при предельных нагрузках (максимально в 100 раз), артерио- венозной разницы по кислороду, плотности капиллярного русла в работающих мышцах, росту концентрации миоглобина и повышению активности окислительных ферментов. Защитную роль в профилактике сердечно-сосудистых заболеваний играет также повышение фибринолитической активности крови при оздоровительной тренировке (максимум в 6 раз) и снижение тонуса симпатической нервной системы. В результате снижается реакция на нейрогормоны в условиях эмоционального напряжения, т.е. повышается устойчивость организма к стрессорным воздействиям. Помимо выраженного увеличения резервных возможностей организма под влиянием оздоровительной тренировки чрезвычайно важен также ее профилактический эффект, связанный с опосредованным влиянием на факторы риска сердечно-сосудистых заболеваний. С ростом тренированности (по мере повышения уровня физической работоспособности) наблюдается отчетливое снижение всех основных факторов риска НЕС -- содержания холестерина в крови, артериального давления и массы тела. Б. А. Пирогова (1985) в своих наблюдениях показала: по мере роста УФС содержание холестерина в крови снизилось с 280 до 210 мг, а триглицеридов со 168 до 150 мг%. Следует особо сказать о влиянии занятий оздоровительной физической культурой на стареющий организм.

Связь произвольной силы и выносливости мышц.

Между показателями произвольной силы и выносливости мышц (локальной выносливости) существует сложная связь. МПС и статическая выносливость одной и той же мышечной группы связаны прямой зависимостью: чем больше МПС данной мышечной группы, тем длительнее можно удержать выбранное усилие (больше абсолютная локальная выносливость). Иная связь между произвольной силой и выносливостью обнаруживается в экспериментах, в которых разные испытуемые развивают одинаковые относительные мышечные усилия, например 60% от их МПС (при этом, чем сильнее испытуемый, тем большее по абсолютной величине мышечное усилие он должен поддерживать). В этих случаях среднее предельное время работы (относительная локальная выносливость) чаще всего одинаково у людей с разной МПС.

Показатели МПС и динамической выносливости не обнаруживают прямой связи у не спортсменов и спортсменов различных, специализаций. Например, как среди мужчин, так и среди женщин наиболее сильными мышцами ног обладают дискоболы, но у них самые низкие показатели динамической выносливости. Бегуны на средние и длинные дистанции по силе мышц ног не отличаются от не спортсменов, но у первых чрезвычайно большая динамическая локальная выносливость. В то же время у них не выявлено повышенной динамической выносливости мышц рук. Все это свидетельствует о высокой специфичности тренировочных эффектов: больше всего повышаются те функциональные свойства и у тех мышц, которые являются основными в тренировке спортсмена. Тренировка, направленная преимущественно на развитие мышечной силы, совершенствует механизмы, способствующие улучшению этого качества, значительно меньше влияя на мышечную выносливость, и наоборот.

Рабочая гипертрофия мышц. Поскольку сила мышцы зависит от ее поперечника, увеличение его сопровождается ростом силы данной мышцы. Увеличение мышечного поперечника в результате физической тренировки называется рабочей гипертрофией мышцы (от греч. “трофос”—питание). Мышечные волокна, являющиеся высокоспециализированными дифференцированными клетками, по-видимому, не способны к клеточному делению с образованием новых волокон. Во всяком случае, если деление мышечных клеток и имеет место, то только в особых случаях и в очень небольшом количестве. Рабочая гипертрофия мышцы происходит почти или исключительно за счет утолщения (увеличения объема) существующих мышечных волокон. При значительном утолщении мышечных волокон, возможно, их продольное механическое расщепление с образованием “дочерних” волокон с общим сухожилием. В процессе силовой тренировки число продольно расщепленных волокон увеличивается.

Можно выделить два крайних типа рабочей гипертрофии мышечных волокон — саркоплазматический и миофибриллярный. Саркоплазматическая рабочая гипертрофия — это утолщение мышечных волокон за счет преимущественного увеличения объема саркоплазмы, т. е. не сократительной их части. Гипертрофия этого типа происходит за счет повышения содержания не сократительных (в частности, митохондриальных) белков и метаболических резервов мышечных волокон: гликогена, без азотистых веществ, креатин фосфата, миоглобина и др. Значительное увеличение числа капилляров в результате тренировки также может вызывать некоторое утолщение мышцы.

Наиболее предрасположены к саркоплазматической гипертрофии, по-видимому, медленные и быстрые окислительные волокна. Рабочая гипертрофия этого типа мало влияет на рост силы мышц, но зато значительно повышает способность к продолжительной работе, т. е. увеличивает их выносливость.

Миофибриллярная рабочая гипертрофия связана с увеличением числа и объема, миофибрилл, т. е. собственно-сократительного аппарата мышечных волокон. При этом возрастает плотность укладки миофибрилл в мышечном волокне. Такая рабочая гипертрофия мышечных волокон ведет к значительному росту МС мышцы. Существенно увеличивается и абсолютная сила мышцы, а при рабочей гипертрофии первого типа она или совсем не изменяется, или даже несколько уменьшается. По-видимому, наиболее предрасположены к миофибриллярной гипертрофии быстрые мышечные волокна.

В реальных ситуациях гипертрофия мышечных волокон представляет собой комбинацию двух названных типов, с преобладанием одного из них. Преимущественное развитие того или иного типа рабочей гипертрофии определяется характером мышечной тренировки. Длительные динамические упражнения, развивающие выносливость, с относительно небольшой силовой нагрузкой на мышцы вызывают главным образом рабочую гипертрофию первого типа. Упражнения с большими мышечными напряжениями (более 70% от МПС тренируемых групп мышц), наоборот, способствуют развитию рабочей гипертрофии преимущественно второго типа.

В основе рабочей гипертрофии лежит интенсивный синтез и уменьшенный распад мышечных белков. Соответственно концентрация ДНК и РНК в гипертрофированной мышце больше, чем в нормальной. Креатин, содержание которого увеличивается в сокращающейся мышце, может стимулировать усиленный синтез актина и миозина и таким образом способствовать развитию рабочей гипертрофии мышечных волокон.

Очень важную роль в регуляции объема мышечной массы, в частности в развитии гипертрофии мышц, играют андрогены (мужские половые гормоны). У мужчин они вырабатываются половыми железами (семенниками) и в коре надпочечников, а у женщин — только в коре надпочечников. Соответственно у мужчин количество андрогенов в организме больше, чем у женщин. Роль андрогенов в увеличении мышечной массы проявляется в следующем.

Возрастное развитие мышечной массы идет параллельно с увеличением продукции андрогенных гормонов. Первое заметное утолщение мышечных волокон наблюдается в 6—7-летнем возрасте, когда усиливается образование андрогенов. С наступлением полового созревания (в 11—15 лет) начинается интенсивный прирост мышечной массы у мальчиков, который продолжается и после периода полового созревания. У девочек развитие мышечной массы в основном заканчивается с периодом полового созревания. Соответствующий характер имеет и рост мышечной силы в школьном возрасте.

Даже после коррекции показателей силы с размерами тела силовые показатели у взрослых женщин ниже, чем у мужчин. Вместе с тем если у женщин в результате некоторых заболеваний усиливается секреция андрогенов надпочечниками, то интенсивно увеличивается мышечная масса, появляется хорошо развитый мышечный рельеф, возрастает мышечная сила.

В опытах на животных установлено, что введение препаратов андрогенных гормонов (анаболиков) вызывает значительную интенсификацию синтеза мышечных белков, в результате чего увеличивается масса тренируемых мышц и как результат — их сила. Вместе с тем развитие рабочей гипертрофии скелетных мышц может происходить и без участия андрогенных и других гормонов (гормона роста, инсулина и тироидных гормонов).

Силовая тренировка, как и другие виды тренировки, по-видимому, не изменяет соотношения в мышцах двух основных типов мышечных волокон — быстрых и медленных. Вместе с тем она способна изменять соотношение двух видов быстрых волокон, увеличивая процент быстрых гликолитических (БГ) и соответственно уменьшая процент быстрых окислительно-гликолитических (БОГ) волокон. При этом в результате силовой тренировки, степень гипертрофии быстрых мышечных волокон значительно больше, чем медленных окислительных (МО) волокон, тогда как тренировка выносливости ведет к гипертрофии в первую очередь медленных волокон. Эти различия показывают, что степень рабочей гипертрофии мышечного волокна зависит как от меры его использования в процессе тренировок, так и от его способности к гипертрофии.

Силовая тренировка связана с относительно небольшим числом повторных максимальных или близких к ним мышечных сокращений, в которых участвуют как быстрые, так и медленные мышечные волокна. Однако и небольшого числа повторений достаточно для развития рабочей гипертрофии быстрых волокон, что указывает на их большую предрасположенность к развитию рабочей гипертрофии (по сравнению с медленными волокнами). Высокий процент быстрых волокон в мышцах служит важной предпосылкой для значительного роста мышечной силы при направленной силовой тренировке. Поэтому люди с высоким процентом быстрых волокон в мышцах имеют более высокие потенциальные возможности для развития силы и мощности.

Тренировка выносливости связана с большим числом повторных мышечных сокращений относительно небольшой силы, которые в основном обеспечиваются активностью медленных мышечных волокон. Поэтому понятна более выраженная рабочая гипертрофия медленных мышечных волокон при этом виде тренировки по сравнению с гипертрофией быстрых волокон, особенно быстрых гликолитических.

Физиологические основы скоростно-силовых качеств (мощности). Максимальная мощность (иногда называемая “взрывной” мощностью) является результатом оптимального сочетания силы и скорости. Мощность проявляется во многих спортивных упражнениях: в метаниях, прыжках, спринтерском беге, борьбе. Чем выше мощность развивает спортсмен, тем большую скорость он может сообщить снаряду или собственному телу, так как финальная скорость снаряда (тела) определяется силой и скоростью приложенного воздействия.

Мощность может быть увеличена за счет увеличения силы или скорости сокращения мышц или обоих компонентов. Обычно наибольший прирост мощности достигается за счет увеличения мышечной силы.

Силовой компонент мощности (динамическая сила). Мышечная сила, измеряемая в условиях динамического режима работы мышц (концентрического или эксцентрического сокращения), обозначается как динамическая сила. Она определяется по ускорению, сообщаемому массе при концентрическом сокращении мышц, или по замедлению (ускорению с обратным знаком) движения массы при эксцентрическом сокращении мышц. Такое определение основано на физическом законе, согласно которому Р = т • а. При этом проявляемая мышечная сила зависит от величины перемещаемой массы: в некоторых пределах с увеличением, массы перемещаемого тела показатели силы растут.

Дальнейшее увеличение массы не сопровождается приростом динамической силы.

При измерении динамической силы испытуемый выполняет движение, которое требует сложной внемышечной и внутримышечной координации. Поэтому показатели динамической силы значительно различаются у разных людей и при повторных измерениях у одного и того же человека, причем больше, чем показатели изометрической (статической) силы.

Динамическая сила, измеряемая при концентрическом сокращении мышц, меньше, чем статическая сила. Конечно, такое сравнение проводится при максимальных усилиях испытуемого в обоих случаях и при одинаковом суставном угле. В режиме эксцентрических сокращений (уступающий режим) мышцы способны проявлять динамическую силу, значительно превышающую максимальную изометрическую. Чем больше скорость движения, тем больше проявляемая динамическая сила при уступающем режиме сокращения мышц.

У одних и тех же испытуемых обнаруживается умеренная корреляция между показателями статической и динамической силы (коэффициенты корреляции в пределах 0,6—0,8). Увеличение динамической силы в результате динамической тренировки может не вызывать повышения статической силы. Изометрические упражнения или не увеличивают динамической силы, или увеличивают значительно меньше, чем статическую. Все это указывает на чрезвычайную специфичность тренировочных эффектов: использование определенного вида упражнений (статического или динамического) вызывает наиболее значительное повышение результата именно в этом виде упражнений. Более того, наибольший прирост мышечной силы обнаруживается при той же скорости движения, при которой происходит тренировка.

К одной из разновидностей мышечной силы относится так называемая взрывная сила, которая характеризует способность к быстрому проявлению мышечной силы. Она в значительной мере определяет, например, высоту прыжка вверх с прямыми ногами или прыжка в длину с места, переместительную скорость на коротких отрезках бега с максимально возможной скоростью. В качестве показателей взрывной силы используются градиенты силы, т. е. скорость ее нарастания, которая определяется как отношение максимальной проявляемой силы к времени ее достижения или как время достижения какого-нибудь выбранного уровня мышечной силы (абсолютный градиент), либо половины максимальной силы, либо какой-нибудь другой ее части (относительный градиент силы). Градиент силы выше у представителей скоростно-силовых видов спорта (спринтеров), чем у не спортсменов или спортсменов, тренирующихся на выносливость. Особенно значительны различия в абсолютных градиентах силы.

Показатели взрывной силы мало зависят от максимальной произвольной изометрической силы. Так, изометрические упражнения, увеличивая статическую силу, незначительно изменяют взрывную силу, определяемую по показателям градиента силы или по показателям прыгучести (прыжками вверх с прямыми ногами или прыжка с места в длину). Следовательно, физиологические механизмы, ответственные за взрывную силу, отличаются от механизмов, определяющих статическую силу. Среди координационных факторов важную роль в проявлении взрывной силы играет характер импульсации мотонейронов активных мышц — частота их импульсации в начале разряда и синхронизация импульсации разных мотонейронов. Чем выше начальная, частота импульсации мотонейронов, тем быстрее нарастает мышечная сила.

В проявлении взрывной силы очень большую роль играют скоростные сократительные свойства мышц, которые в значительной мере зависят от их композиции, т. е. соотношения быстрых и медленных волокон. Быстрые волокна составляют основную массу мышечных волокон у высококвалифицированных представителей скоростно-силовых видов спорта. В процессе тренировки эти волокна подвергаются более значительной гипертрофии, чем медленные. Поэтому у спортсменов скоростно-силовых видов спорта быстрые волокна составляют основную массу мышц (или иначе занимают на поперечном срезе значительно большую площадь) по сравнению с нетренированными людьми или представителями других видов спорта, особенно тех, которые требуют проявления преимущественно выносливости. Согласно второму закону Ньютона, чем больше усилие (сила), приложенное к массе, тем больше скорость, с которой движется данная масса. Таким образом, сила сокращения мышц влияет на скорость движения: чем больше сила, тем быстрее движение.

Физиологические механизмы развития силы.

В развитии мышечной силы имеют значение: 1) внутримышечные факторы, 2) особенности нервной регуляции и 3) психофизиологические механизмы.

Внутримышечные факторы развития силы включают в себя биохимические, морфологические и функциональные особенности мышечных волокон.

• Физиологический поперечник, зависящий от числа мышечных волокон (он наибольший для мышц с перистым строением);

• Состав (композиция) мышечных волокон, соотношение слабых и более возбудимых медленных мышечных волокон (окислительных, мало утомляемых) и более мощных высоко пороговых быстрых мышечных волокон (гликолитических, утомляемых);

• Миофибриллярная гипертрофия мышцы - т.е. увеличение мышечной массы, которая развивается при силовой тренировке в результате адаптационно-трофических влияний и характеризуется ростом толщины и более плотной упаковкой сократительных элементов мышечного волокна - миофибрилл. (При этом окружность плеча может достигать 80 см, а бедра - 95 см и более). Нервная регуляция обеспечивает развитие силы за счет совершенствования деятельности отдельных мышечных волокон, двигательных единиц (ДЕ) целой мышцы и межмышечной координации. Она включает в себя следующие факторы: • Увеличение частоты нервных импульсов, поступающих в скелетные мышцы от мотонейронов спинного мозга и обеспечивающих переход от слабых одиночных сокращений их волокон к мощным тетаническим;

• Активация многих ДЕ - при увеличении числа вовлеченных в двигательный акт ДЕ повышается сила сокращения мышцы;

• Синхронизация активности ДЕ - одновременное сокращение возможно большего числа активных ДЕ резко увеличивает силу тяги мышцы;

• Межмышечная координация - сила мышцы зависит от деятельности других мышечных групп: сила мышцы растет при одновременном расслаблении ее антагониста, она уменьшается при одновременном сокращении других мышц и увеличивается при фиксации туловища или отдельных суставов мышцами-антагонистами. Например, при подъеме штанги возникает явление натуживания (выдох при закрытой голосовой щели), приводящее к фиксации мышцами туловища спортсмена и создающие прочную основу для преодоления поднимаемого веса.

Психофизиологические механизмы увеличения мышечной силы связаны с изменениями функционального состояния (бодрости, сонливости, утомления), влияниями мотиваций и эмоций, усиливающих симпатические и гормональные воздействия со стороны гипофиза, надпочечников и половых желез, биоритмов.

Важную роль в развитии силы играют мужские половые гормоны (андрогены), которые обеспечивают рост синтеза сократительных белков в скелетных мышцах. Их у мужчин в 10 раз больше, чем у женщин. Этим объясняется больший тренировочный эффект развития силы у спортсменов по сравнению со спортсменками, даже при абсолютно одинаковых тренировочных нагрузках.

Открытие “эффекта андрогенов привело к попыткам ряда тренеров и спортсменов использовать для развития силы аналоги половых гормонов анаболические стероиды. Однако вскоре обнаружились пагубные последствия их приема. В результате действия анаболиков у спортсменов-мужчин подавляется функция собственных половых желез (вплоть до полной импотенции и бесплодия), а у женщин-спортсменок происходит изменение вторичных половых признаков по мужскому типу (огрубение голоса, изменение характера оволосения) и нарушается специфический биологический цикл женского организма (возникают отклонения в длительности и регулярности месячного цикла, вплоть до полного его прекращения и подавления детородной функции). Особенно тяжелые последствия наблюдаются у спортсменов-подростков. В результате подобные препараты были отнесены к числу запрещенных допингов.

Попытки заставить мышцу развивать мощные тетанические сокращения с помощью электростимуляции также не привели к успеху. Эффект воздействия прекращался через 1-2 недели, а искусственно вызванная способность развивать сильные сокращения не могла полноценно использоваться, так как не включалась в необходимые двигательные навыки . Функциональные резервы силы.

У каждого человека имеются определенные резервы мышечной силы, которые могут быть включены лишь при экстремальных ситуациях (чрезвычайная опасность для жизни, чрезмерное психоэмоциональное напряжение и т.п.).

В условиях электрического раздражения мышцы или под гипнозом можно выявить максимальную мышечную силу, которая окажется больше той силы, которую человек проявляет при предельном произвольном усилии - так называемой максимальной произвольной силы. Разница между максимальной мышечной силой и максимальной произвольной силой называется дефицитом мышечной силы. Эта величина уменьшается в ходе силовой тренировки, так как происходит перестройка морфофункциональных возможностей мышечных волокон и механизмов их произвольной регуляции.

У систематически тренирующихся спортсменов наряду с экономизацией функций происходит относительное увеличение общих и специальных физиологических резервов. При этом первые реализуются через общие для различных упражнений проявления физических качеств, а вторые - в виде специальных для каждого вида спорта навыков и особенностей силы, быстроты и выносливости (Мозжухин А.С., 1979).

К числу общих функциональных резервов мышечной силы отнесены следующие факторы.

• Включение дополнительных ДЕ в мышце;

• Синхронизация возбуждения ДЕ в мышце;

• Своевременное торможение мышц-антагонистов;

• Координация (синхронизация) сокращений мышц-антагонистов;

• Повышение энергетических ресурсов мышечных волокон;

• Переход от одиночных сокращений мышечных волокон к тетаническим;

• Усиление сокращения после оптимального растяжения мышцы;

• Адаптивная перестройка структуры и биохимии мышечных волокон (рабочая гипертрофия, изменение соотношения объемов медленных и быстрых волокон и др.).

2Литературный обзор.

Любые движения человека-это результат согласованной деятельности Ц.Н.С. и периферических отделов двигательного аппарата, в частности скелетно-мышечной системы. Без проявления мышечной силы никакие физические упражнения выполнять невозможно.

Сила-это, как принято в современной механике, всякое действие одного материального тела на другое, в результате которого происходит изменения в состоянии покоя или движения тела. “Лишь измеренность движения и придает категории силы ее ценность. Без этого, она не имеет ни какой ценности”. (Ф. Энгельс)

В специальной научно-методической литературе имеется несколько определении мышечной силы как двигательного качества.

Одни авторы рассматривают мышечную силу как способность преодолевать внешнее сопротивление или противодействовать ему за счет мышечных усилии, другие – как способность проявлять за счет мышечных усилии определенные величины силы, третьи – как способность за счет мышечного напряжения проявлять определенные величины силы. Все эти определения почти равноценны.

Чрезвычайно важной особенностью мышечной силы, проявляемой в динамическом режиме, является то, что ее проявление может быть мгновенным. Наибольшая величина мгновенной силы будет характеризовать максимальную динамическую силу. Однако, как известно, проявление мышечной силы при выполнении любого движения всегда протекает во времени. В этом случае конечный эффект постоянного проявления силы во времени определяется импульсом силы – F*t.

Исследуя механизмы динамики мышечного сокращения при преодолении на инерционном динамографе, Н.Н. Гончаров при обработке полученных данных ввел понятие средняя сила, которая, по его расчетам, равна 50% максимальной динамической силы. Средняя динамическая сила представляет собой условную величину, удобную для оценки эффекта действия силы по полной амплитуде движения и максимальном волевом усилии. При статическом режиме работы мышц сила замеряется как абсолютная и относительная статическая сила.

Скелетные мышцы, общее количество которых у человека свыше 600, состоят из связок мышечных волокон (клеток), которые иннервируются моторными нервами. Каждый моторный нерв имеет многочисленные ответвления и соединения с мышечными волокнами. В результате раздражения моторного нерва происходит сокращение мышечных волокон моторной единицы. Между поперечником моторного нерва и размером моторной (двигательной) единицы существует связь. Большие моторные нервы имеют также более высокий порог и меньшую возбудимость, чем более тонкие моторные нервы. В одной мышце находятся небольшие, легко отделяемые моторные единицы, которые труднее выделить и которые используются реже.

Гистологически определены два вида мышечных волокон: красные и белые, каждый из которых имеет функциональную характеристику. Белые мышечные волокна предназначены для быстрых, мощных, резких сокращений. В отличии от белых волокон меньшие по размеру красные волокна, которых в мышцах человека около 30%, показывают меньшую силу на одну моторную единицу и в 3 раза большее время сокращения. Моторные единицы, состоящие из красных мышечных волокон, не могут поднимать такие же веса, как моторные единицы из белых мышечных волокон, и склонны к медленным сокращениям. Однако они могут выполнять более длительную работу за счет хорошего кровяного снабжения и большой плотности митохондрий. Как в красных, таки в белых моторных единицах может быть разное количество волокон, однако моторные единицы из красных мышечных волокон имеют тенденцию к меньшему количеству волокон, более тонкому сечению, и поэтому более часто происходит их смена в работе.

Расположение мышечных волокон существенным образом влияет на силу мышц. Волокна, идущие параллельно продольной оси мышцы, не так, как те которые расположены наклонно. Что касается механической активности мышечных волокон, то исследования последних лет объясняют ее как “скольжение” нитей актина и миозина относительно друг друга вследствие последовательного образования и разрушения молекулярных актомиозиновых связей, образование которых происходит спонтанно.

Говоря о механических свойствах активной мышцы, необходимо помнить о наличии тех многообразий, сочетание которых характеризует механическая динамика мышечного сокращения. В настоящее время с уверенностью можно говорить о четырех зависимостях, каждая из которых дает лишь частичное представление об активной мышце. Наиболее подробно и всесторонне данная проблема изучена В.М. Зациорским, анализ работ которого позволяет в самом кратком изложении представить ее следующим образом:

а) Кривая длин напряжений системы последовательных эластических компонентов. Данная кривая не зависит прямо от контрактильного механизма и может быть выражена уравнением:

P=f(l -1)

Где S (см.) – растяжение;

P – нормализованное (т.е. приведенное к Р =1) напряжение;

f и – константы (А. Сандов);

б) Кривая длин напряжений активной мышцы. Можно предположить, что данная кривая отражает свойства контрактильного протеина внутримышечных фибрил и может быть выражена предложенным А. Хиллом (1922) уравнением:

cos

 

Где P – максимальное напряжение (при r=0);

R – максимальное укорочение (P=0);

P и r – соответствующие мгновенные значения напряжения и укорочения;

в) кривая сила-скорость. Можно полагать, что данная зависимость отражает те же свойства, что и предыдущие. Рассматриваемая кривая может быть выражена так называемым основным уравнением мышечного сокращения, предложенным А. Хиллом:

(P+a) (v+b)=(P +a)b

где P – максимальное напряжение при данной длине мышцы;

v – скорость;

P – напряжение;

а и b – константы, которые можно получить как из кривой сила- скорость, так и в результате миометрических измерений;

г) кривая активного состояния является результатом механизма, в котором контрактильный компонент включается и выключается в ответ на изменение потенциалов в клетках мембран. Эта зависимость может быть выражена характеристическими уравнениями А. Хилла с коррективами А. Сандова, который учел, во-первых, изменение величины максимального напряжения во времени и, во-вторых, нелинейную эластичность последовательных эластических компонентов.

Мышечная сила человека при прочих равных условиях пропорциональна площади физиологического поперечника мышцы. Это еще отметил немецкий физиолог Е. Вебер (1846). Известно, что 1 см. мышцы поднимает от 6 – 10 кг. безотносительно к тому, тренирован или не тренирован ее обладатель.

Зависимость мышечной силы от физиологического поперечника мышцы признают все специалисты в области анатомии и физиологии. В то же время в работах по физиологии отмечается, что важнейшим фактором проявления силы является не периферическое изменение, а регуляция работы мышц со стороны нервных центров.

Современной спортивной физиологией установлено, что степень мышечного напряжения может изменяться под воздействием Ц.Н.С., важнейшее значение при этом имеет мобилизация сократительных возможностей тех мышц, которые осуществляют необходимое усилие. Это связано с оптимальным ритмом импульсов в мышце и, таким образом, со степенью сокращения их мышечных волокон и с адаптационно-трофическим воздействием вегетативных нервов на мышцу.

В несколько схематичном виде величина мышечного напряжения в живом организме определяется двумя факторами: импульсацией, приходящей к мышце от мотонейронов передних рогов спинного мозга; условно говоря, реактивностью самой мышцы, то есть силой с которой она отвечает на определенный импульс.

Реактивность мышцы зависит от следующих факторов: а) ее физиологического поперечника; б) макроморфологических и гистологических особенностей строения; в) трофического влияния Ц.Н.С., осуществляемого через адреналосимпатическую систему; г) длины мышцы в данный момент и прочего. При этом ведущим механизмом, позволяющим срочно изменять степень напряжения мышцы, является характер эффекторной импульсации. Применение электромиографии при изучении механизмов мышечного напряжения позволило выявить, что с нарастанием в мышце напряжения позволило выявить, что с нарастанием в мышце напряжения амплитуда регистрируемых потенциалов увеличивается.

Важным моментом для понимания механизма мышечного напряжения является то, что по мере роста проявления мышечной силы частота колебания потенциала одной двигательной единицы может возрасти с 5 – 6 до 35 – 40 раз в секунду. Однако поскольку предельная частота колебаний намного меньше частоты, при которой мышца начинает трансформировать ритм поступающих в нее импульсов, можно полностью согласиться с мнением В.М. Зациорского о том, что деятельность мышцы не связана с трансформацией ритма, как это предполагали ранее. Исследования показали, что частота импульсов линейно пропорциональна развиваемой кинетической энергии. Что же касается амплитуды токов действия одного миона, то она, как правило, не изменяется.

Только при различии пороговых значений амплитуда токов действия может увеличиться из-за неодновременного включения в работу отдельных волокон. Что касается электроактивности всей напрягаемой мышцы, то она также возрастает по мере роста величины ее напряжения, но до определенного предела.

Таким образом говоря о механизме регулирования мышечного напряжения, можно предположить, что оно осуществляется двумя путями: изменением активности различного количества двигательных единиц и частотой нервной импульсации.

При мышечных напряжениях, когда они не доходят до предельных величин, регуляция мышечной силы происходит за счет изменения различного количества двигательных единиц.

В основе регуляции двигательных единиц в этом случае лежит механизм асинхронности. По данным русского ученого Р.С. Персон, асинхронизация определяется проприоцертивным влиянием, которое накладывается на синхронную импульсацию центральных и моторных структур. При этом степень напряжения не регулируется потенциалом отдельных импульсов, поскольку первое волокно является проводником импульсов, характеризующихся постоянной величиной потенциала. В результате создаются условия для получения большей надежности при значительной пропускной способности накала и принципиальной простоте, что позволяет обеспечивать передачу возбуждения в широком диапазоне при относительно небольшом применении частоты импульсации (В.М. Зациорский).

В тех случаях, когда мышечное напряжение достигает предельной активности, в основе его регуляции лежит синхронизация двигательных единиц.

Величина проявления силы при выполнении физических упражнений во многом зависит от формирования условных рефлексов, которые обеспечивают необходимую концентрацию процессов возбуждения и торможения и вовлечение в однократное максимальное сокращение наибольшего числа двигательных единиц (Д.Е.) при оптимальном возбуждении мышцах-антагонистах (А.В. Коробков).

В напряжении мышцы, как полагает целый ряд исследователей, участвуют не все двигательные единицы. При этом чем сильнее возбуждение, тем большее число Д.Е. принимает участие в сокращении. Наибольшее проявление силы может быть достигнуто (если прочие условия равны) при одновременном сокращении максимально возможного количества всех двигательных единиц в мышце.

Механизм градации мускуляторного напряжения является важным фактором увеличения мышечной силы. Ведущим механизмом, изменяющим величину мышечного напряжения, является характер нервной импульсации. Как уже говорилось, с повышением величины проявления силы частота колебаний одной нервно-мышечной единицы может возрастать с 5 – 6 до 35 – 40 колебаний в секунду, и она пропорциональна развиваемой кинетической энергии, а что касается суммарной активности мышцы, то она возрастает до определенного предела.

При синхронном раздражении мышцы двумя стимулами проявляемая сила значительно больше, чем при асинхронном.

Если у нетренированных людей синхронизируется обычно не более 18 - 20% регистрируемых импульсов, то с ростом тренированности это число значительно возрастает.

Понять более глубокие особенности синхронизации позволяет рассмотрение механизма рекрутирования Д.Е. Согласно имеющимся на сегодня данным, при напряжении мышцы активность Д.Е. начинается в определенной последовательности. Вначале Д.Е. образуют так называемый стержень, который по мере повышения напряжения в мышце концентрически увеличивается. Поскольку синхронизация связана с предельным мышечным напряжением, длится она ограниченное время. Синхронизация активности мионов и произвольное сокращение является одним из механизмов внутримышечной координации на уровне мышечных волокон. Что касается деятельности центрально-нервных механизмов синхронизации, то иннервирующая мускульный аппарат веретен гамма-моторная система в данном случае не играет существенной роли. Эффекторная импульсация поступает от соответствующих отделов головного мозга через мотонейрон непосредственно в мышечные волокна. Согласно данным Т. Хеттингера, если принять всю мышечную потенциальную возможность человека за 100%, то обычно автоматические действия требуют менее 20% всего силового потенциала. Область обычных физиологических резервов – менее 40%, а с включением резервов свыше 60% наступает так называемый мобилизационный порог, за которым следуют экстренные резервы, доходящие до 100% - абсолютного мышечного потенциала.

До настоящего времени неясным в механизмах регуляции мышечного напряжения является деятельность центрально-нервных механизмов. Исследования, выполненные в последние годы, дают возможность предполагать, что имеется по крайней мере три ведущих механизма. Один из них, в основе которого лежит рефлекс на растяжение (миотатический рефлекс), связан с регуляцией напряжения при сохранении положения тела. Изменение позы тела меняет и растяжение мышечных веретен, тем самым способствуя возбуждения их рецепторного аппарата, что в свою очередь рефлекторно вызывает изменение мышечного напряжения растянутых мышц.

При выполнении движений, не требующих проявления максимальной мышечной силы, для дозирования мышечного напряжения используется другой механизм. В этом случае высшие нервные центры определяют в основном необходимые величины пространственных, временных и скоростных параметров движения. Что касается нужных комбинаций мышечных напряжений, то он осуществляется более низко расположенными нервными отделами. Известно, что эффекторная импульсация поступает сначала не в мышечные волокна, а в мускульный аппарат мышечных веретен, что приводит к изменению натяжений в них и соответствующему возбуждению их рецепторного аппарата. Далее регуляция осуществляется по схеме миотатического рефлекса.

При выполнении движений, требующих предельных величин проявления мышечной силы, эффекторная импульсация поступает от соответствующих отделов головного мозга через мотонейроны прямо в Д.Е.

В экспериментальных исследованиях было показано, что предварительно растянутая до определенной оптимальной степени мышца сокращается сильнее и быстрее.

Следовательно, использование эластичных свойств мышцы также будет способствовать проявлению большой силы. В динамической анатомии такую работу мышц принято называть баллистической. И.М. Сеченов писал: “Груз действует на мышцы одновременно в двух противоположных направлениях – растягивает ее как всякое упругое тело, и усиливает в то же время развитие в ней сократительных осей”.

Величина рефлекторной реакции во многом зависит, как указывал И.П. Павлов, от силы воздействующего раздражителя. В этом и заключается свойство нашего “двигателя” - приспосабливать свои силы к величине преодолеваемых сопротивлений, причем внешние силы (отягощения) вызывают действие внутренних сил (мышц). Таким образом, к основным факторам, оказывающим влияние на проявление силы мышц человека, относятся величина внешнего сопротивления, состояние внутренней среды организма, координация движений, величина мышечной массы. Величина мышечной силы может увеличиваться за счет любого из этих факторов.

Коротко коснемся понятия “абсолютная сила”. Введено оно для сравнения максимальной силы отдельных, изолированных мышц человека. Физиологи вкладывают в этот термин различный смысл: одни рассматривают абсолютную силу как отношение величины максимальной силы к величине физиологического поперечника мышцы, другие под абсолютной силой понимают величину того предельного груза, который мышца уже не в состоянии поднять. Так, И.С. Беритов отмечает “то максимальное напряжение или та максимальная сила, которую мышца развивает при сокращении в случае, когда она уже не в состоянии поднять груз, называется “абсолютной силой”.

Таким образом, с одной стороны, физиологи установили, что сила человека пропорциональна массе мышц, с другой стороны, биологи доказали, что с увеличением массы у представителей одного и того же класса животных, например млекопитающих, уменьшается относительная сила, то есть отношение абсолютной величины максимальной силы к весу тела.

Исследования физиологов показали, что эта закономерность распространяется и на человека. Так, для сравнения степени развития максимальной силы у тяжелоатлетов различных весовых категорий А.Н. Крестовников употребляет термины “абсолютная” и “относительная” сила мышц. Этого мнения придерживаются и другие исследователи. Силу характеризуют как динамическую или статическую в зависимости от режима мышечной деятельности.

В динамическом режиме сила работающих мышц может проявляться при уменьшении (преодолевающий характер работы) или при удлинении их (уступающий характер работы).

В статическом режиме сила мышц проявляется при “активном” или “пассивном” характере их напряжения.

Методика исследования.

Объект исследования – спортсмены 15лет различных специализаций (баскетбол, лыжи, тяжёлая атлетика, борьба, бокс) /1 спортивного разряда/.

Цель исследования – определить уровень произвольной мышечной силы при различном положении суставного угла в локтевом суставе.

Задачи исследования:

1 – Выявить уровень произвольной мышечной силы у спортсменов различных специализаций.

Общие сведения об испытуемых:

Спортивный разряд: 1 взрослый разряд. Пол: мужской.

Возраст: 15 лет.

Используемая аппаратура:

1 – Кистевой динамометр.

Ход работы:

1 – Испытуемый выполняет надавливание на динамометр в спокойном состоянии локтевого сустава, угол которого равен 160-170 градусов.

2 – Испытуемый выполняет надавливание на динамометр в максимально согнутом состоянии локтевого сустава, угол которого равен 10-15 градусов.

3 – Испытуемый выполняет надавливание на динамометр в максимально разогнутом состоянии локтевого сустава, угол которого равен 190-200 градусов.

 

Результаты исследования.

Специализация.

Своб.

(кг.)

Согн.

(кг.)

Разогн.

(кг.)

Испытуемый 1.

Борьба.

35

30

39

Испытуемый 2.

Борьба.

34

28

32

Испытуемый 3.

Борьба.

36

28

22

Испытуемый 4.

Борьба.

35

28

33

Испытуемый 5.

Борьба.

34

29

32

Средне-статистич.

34.8

28.6

31.6

Отклонение

0,64

0,72

3,84

Испытуемый 1.

Бокс.

38

30

34

Испытуемый 2.

Бокс.

35

30

31

Испытуемый 3.

Бокс.

36

32

30

Испытуемый 4.

Бокс.

30

24

26

Испытуемый 5.

Бокс.

30

20

18

Средне-статистич.

33.8

27.2

25.8

Отклонение

3,04

4,16

4,64

Испытуемый 1.

Лыжи.

36

34

36

Испытуемый 2.

Лыжи.

36

39

36

Испытуемый 3.

Лыжи.

35

22

28

Испытуемый 4.

Лыжи.

35

31

28

Испытуемый 5.

Лыжи.

31

24

22

Средне-статистич.

34.6

30.0

30.0

Отклонение

1,44

5,6

4,8

Испытуемый 1.

Баскетбол.

31

23

29

Испытуемый 2.

Баскетбол.

27

38

33

Испытуемый 3.

Баскетбол.

27

21

24

Испытуемый 4.

Баскетбол.

30

31

26

Испытуемый 5.

Баскетбол.

28

24

27

Средне-статистич.

28.6

27.4

27.8

Отклонение

1,52

5,68

2,56

Испытуемый 1.

Т /А.

50

40

38

Испытуемый 2.

Т /А.

44

45

43

Испытуемый 3.

Т /А.

45

41

48

Испытуемый 4.

Т /А.

40

33

23

Испытуемый 5.

Т /А.

46

44

41

Средне-статистич.

41.0

40.6

38.6

Отклонение

2,40

3,28

6,48

Среднее по всем

34,56

30,2

30,76

Тест показал, что при различных положениях суставного угла произвольная мышечная сила больше у испытуемых, которые занимаются тяжелой атлетикой.

 

Список литературы

1 – Физиология человека. Под редакцией В.В. Васильевой. – Москва: Физкультура и спорт, 1984.

2 – Анатомия и физиология (составители Е.А. Воробьева, А.В. Губарь, Е.Б. Сафьянникова). – Москва: Медицина,1975.

3 – Физиология мышечной деятельности, труда и спорта (руководство по физиологии). – Ленинград: Наука, 1969.

4 – Практикум по общей физиологии и физиологии спорта. Под редакцией А.Б. Гандельсмана. – Москва: Физкультура и спорт, 1973.

5 – Физиологические методы исследования в спорте (составил С.Н. Кучкин, В.М. Ченегин). – Волгоград: изд. В.Г.И.Ф.К., 1982.

6 – Физиология спорта. Физиологические особенности спортивных упражнений скоростно-силового характера (лекция Н.А. Масальгина). – Москва: изд. С.Г.И.Ф.К., 1979.

7 – Физиология спорта. (составили А.С. Солодков, Е.Б. Сологуб). Санкт-Петербург: СПбГАФК им. П.Ф. Лесгафта. 1999.

8 – Физиология мышечной деятельности. Под редакцией Я.М. Коца. – Москва: Физкультура и спорт, 1982.

9 - Физиология человека. Под редакцией Н.В. Зимкина. – Москва: Физкультура и спорт, 1975.

10 – Методические указания по общей физиологии. Под редакцией А.С. Мозжухина, Е.Б. Сологуб. – Ленинград: изд. ГДОИФК, 1985.

11 – Спортивная физиология. Под редакцией Я.М. Коца. – Москва: Физкультура и спорт, 1986.

12 – Аулик И.В. Определение физической работоспособности в клинике и спорте. – Москва: Медицина, 1979.

13 – Ахмедов К.Б., Трунин В.В. Методические указания по исследованию физической работоспособности человека. – Алма-Ата, изд. КИФК, 1975.

14 – Годик М.А. Спортивная метрология. Москва: Физкультура и спорт, 1988.

15 – Кузнецов В.В. Специальная силовая подготовка спортсмена. Москва: Советская Россия, 1975.

Сайт управляется системой uCoz